457 research outputs found

    Human Capital Decisions and Employee Satisfaction at Selected Hotels in India

    Get PDF
    Understanding the role of human capital is one of the key considerations in delivering and sustaining competitiveness. Managing employees in the hospitality industry is particularly a challenging task as the industry is considered to be labor intensive. High turnover and increasing employee demands are among the problems that are identified as threats to maintaining a strong competitive position. Successful hotels attempt to retain their best employees in an effort to adapt to changing environments and increased competition. Effective hotel human resource systems can produce positive outcomes, through effective employee retention strategies that focus on work force motivation, attitudes and perception. The positive implementation of these strategies can influence and create employee satisfaction. This study aims to focus on the relationship between the mediating variables of motivation, attitudes, perception and their effect on employee satisfaction. These findings are based upon an extensive survey carried out between April 2009 and June 2009 in the small mountainous state of Uttarakhand, located within the Indian sub-continent. Although the area of study is confined to the Kumaon region of Uttarakhand, the authors contend that the findings and implications can be applied to other remote developing tourist destinations in other regions

    Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application.

    Get PDF
    This article presents data related to the research article entitled "The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering" [1]. We provide data on mechanical properties, in vitro bioactivity and drug release of bioactive glass (BG) scaffolds coated by poly (ε-caprolactone) (PCL) and zein used as a controlled release device for tetracycline hydrochloride (TCH). By coating the BG scaffolds with PCL or PCL/zein blend the mechanical properties of the scaffolds were substantially improved, i.e., the compressive strength increased from 0.004±0.001 MPa (uncoated BG scaffolds) to 0.15±0.02 MPa (PCL/zein coated BG scaffolds). A dense bone-like apatite layer formed on the surface of PCL/zein coated scaffolds immersed for 14 days in simulated body fluid (SBF). The data describe control of drug release and in vitro degradation behavior of coating by engineering the concentration of zein. Thus, the developed scaffolds exhibit attractive properties for application in bone tissue engineering research

    CXCL12/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axonterminals

    Get PDF
    The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by -latrotoxin. CXCL12 acts via binding to the neuronal CXCR4 receptor. A CXCL12-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration invivo. Recombinant CXCL12 invivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons invitro. These findings indicate that the CXCL12-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage

    Reactive Molecular Dynamics study on the first steps of DNA-damage by free hydroxyl radicals

    Full text link
    We employ a large scale molecular simulation based on bond-order ReaxFF to simulate the chemical reaction and study the damage to a large fragment of DNA-molecule in the solution by ionizing radiation. We illustrate that the randomly distributed clusters of diatomic OH-radicals that are primary products of megavoltage ionizing radiation in water-based systems are the main source of hydrogen-abstraction as well as formation of carbonyl- and hydroxyl-groups in the sugar-moiety that create holes in the sugar-rings. These holes grow up slowly between DNA-bases and DNA-backbone and the damage collectively propagate to DNA single and double strand break.Comment: 6 pages and 8 figures. movies and simulations are available at: http://qmsimulator.wordpress.com

    Sonic Hedgehog Is a Chemoattractant for Midbrain Dopaminergic Axons

    Get PDF
    Midbrain dopaminergic axons project from the substantia nigra (SN) and the ventral tegmental area (VTA) to rostral target tissues, including the striatum, pallidum, and hypothalamus. The axons from the medially located VTA project primarily to more medial target tissues in the forebrain, whereas the more lateral SN axons project to lateral targets including the dorsolateral striatum. This structural diversity underlies the distinct functions of these pathways. Although a number of guidance cues have been implicated in the formation of the distinct axonal projections of the SN and VTA, the molecular basis of their diversity remains unclear. Here we investigate the molecular basis of structural diversity in mDN axonal projections. We find that Sonic Hedgehog (Shh) is expressed at a choice point in the course of the rostral dopaminergic projections. Furthermore, in midbrain explants, dopaminergic projections are attracted to a Shh source. Finally, in mice in which Shh signaling is inactivated during late neuronal development, the most medial dopaminergic projections are deficient

    Computational studies for reduced graphene oxide in hydrogen-rich environment

    Full text link
    We employ molecular dynamic simulations to study the reduction process of graphene-oxide (GO) in a chemically active environment enriched with hydrogen. We examine the concentration and pressure of hydrogen gas as a function of temperature in which abstraction of oxygen is possible with minimum damage to C-sp2^2 bonds hence preserving the integrity of the graphene sheet. Through these studies we find chemical pathways that demonstrate beneficiary mechanisms for the quality of graphene including formation of water as well as suppression of carbonyl pair holes in favor of hydroxyl and epoxy formation facilitated by hydrogen gas in the environment.Comment: 9 pages and 9 figures. Animations and movies are available at: http://qmsimulatorgojpc.wordpress.com

    X/Ka Celestial Frame Improvements: Vision to Reality

    Get PDF
    In order to extend the International Celestial Reference Frame from its S/X-band (2.3/8.4 GHz) basis to a complementary frame at X/Ka-band (8.4/32 GHz), we began in mid-2005 an ongoing series of X/Ka observations using NASA s Deep Space Network (DSN) radio telescopes. Over the course of 47 sessions, we have detected 351 extra-galactic radio sources covering the full 24 hours of right ascension and declinations down to -45 degrees. Angular source position accuracy is at the part-per-billion level. We developed an error budget which shows that the main errors arise from limited sensitivity, mismodeling of the troposphere, uncalibrated instrumental effects, and the lack of a southern baseline. Recent work has improved sensitivity by improving pointing calibrations and by increasing the data rate four-fold. Troposphere calibration has been demonstrated at the mm-level. Construction of instrumental phase calibrators and new digital baseband filtering electronics began in recent months. We will discuss the expected effect of these improvements on the X/Ka frame

    Dislocations and Grain Boundaries in Two-Dimensional Boron Nitride

    Full text link
    A new dislocation structure-square-octagon pair (4|8) is discovered in two-dimensional boron nitride (h-BN), via first-principles calculations. It has lower energy than corresponding pentagon-heptagon pairs (5|7), which contain unfavorable homo-elemental bonds. Based on the structures of dislocations, grain boundaries (GB) in BN are investigated. Depending on the tilt angle of grains, GB can be either polar (B-rich or N-rich), constituted by 5|7s, or un-polar, composed of 4|8s. The polar GBs carry net charges, positive at B-rich and negative at N-rich ones. In contrast to GBs in graphene which generally impede the electronic transport, polar GBs have smaller bandgap compared to perfect BN, which may suggest interesting electronic and optic applications
    • …
    corecore